
Project 2: Discrete Event Simulation of a Barrier Search

Problem Description

Targets attempt to travel down a channel having width L while a searcher creates a "barrier" by traveling back and forth perpendicular to the channel. Each target has speed u and the searcher has speed v. The searcher is equipped with a sensor that has range R and continuous detection time that is exponential with a mean of λ . The targets start at a location that is uniformly distributed along the width of the channel and distance q from the searcher's track. A new target starts every t time units, where t is gamma distributed with parameters α and β

The objective is to estimate the average proportion of targets detected over a period of 30 days (assume that the searcher can continuously patrol 24 hours a day). Perform 50 independent replications to produce an interval estimate.

Parameters

Use the following values for the model.

- Channel width (L) = 300 nm
- Searcher speed (v) = 30 knots
- Sensor Range (R) = 15 nm
- Mean detection time when in range (λ) = 3 min
- Target speed (u) = 25 knots
- Initial distance from searcher (q) = 100 nm
- Interarrival time parameters for targets (hours): $\alpha = 2.0$, $\beta = 1.5$

Deliverables

- 1. Your well-commented source code
- 2. Output (non-verbose)
- 3. Brief (1-2 pages) write-up describing the approach you took and the design of your model.

Hints

- 1. Define a class called TargetGenerator that instantiates a target, registers it with a referee, and listens for the EndMove of that target, as with the Mover Manager classes. When it hears the EndMove event, unregister the target from the referee and update a counter.
- 2. Define a class that listens for either the detection PropertyChangeEvent or the Detection event of the Sensor and updates a counter.
- 3. Use the StudentT.getQuantile(...), in the simkit.stat package to obtain the quantile for your interval estimate.